
Performance of OpenDPI in Identifying Sampled
Network Traffic

Jawad Khalife and Amjad Hajjar

Lebanese University/Faculty of Engineering, IT department, Beirut, Lebanon
Email: jawad_khalife@hotmail.com, arhajjar@idm.net.lb

Jesús Díaz-Verdejo

University of Granada/Department of Signal Processing, Telematics and Communication, Granada, Spain
Email: jedv@ugr.es

Abstract—The identification of the nature of the traffic
flowing through a TCP/IP network is a relevant target for
traffic engineering and security related tasks. Despite the
privacy concerns it arises, Deep Packet Inspection (DPI) is
one of the most successful current techniques. Nevertheless,
the performance of DPI is strongly limited by computational
issues related to the huge amount of data it needs to handle,
both in terms of number of packets and the length of the
packets. One way to reduce the computational overhead
with identification techniques is to sample the traffic being
monitored. This paper addresses the sensitivity of OpenDPI,
one of the most powerful freely available DPI systems, with
sampled network traffic. Two sampling techniques are
applied and compared: the per-packet payload sampling,
and the per-flow packet sampling. Based on the obtained
results, some conclusions are drawn to show how far DPI
methods could be optimised through traffic sampling.

Index Terms— network traffic identification, deep packet
inspection, optimisation, payload truncation, flow
truncation, traffic sampling

I. INTRODUCTION

Network traffic identification aims to classify packets
(packet-based identification) or flows (flow-based
identification) in a given network according to the
associated application protocol. Traditionally, this task
has been considered quite simple as ports were assigned
for many application protocols. In this scenario a simple
inspection of transport layer header suffices to identify
the underlying protocol. Nevertheless, this situation is
changing, thus making traffic identification a hot research
topic, as some Internet applications, such as P2P, are
becoming more and more challenging to identification
techniques by using port obfuscation, encryption, and/or
tunnelling [1]. One of the most successful methods
currently available to identify traffic is based on the
examination of the payloads to find known protocol
patterns or signatures (e.g. “GET * HTTP”). This is the
so-called DPI (Deep Packet Inspection) [2].

However, in today’s networks, performance and
privacy issues are two important factors that are
considered some of the weaknesses of DPI. On the other
hand, DPI is not able to inspect ciphered payloads. This
fact is pushing researchers for alternate solutions in

which P2P identification is still considered a complex
task, especially when DPI is not involved at all.

As such, one of the current research trends is to
optimise current DPI based identification methods
characterised by their high accuracy, while keeping at the
same time an acceptable level of user privacy and
performance.

One of the DPI optimisation means is to reduce the
input size through traffic sampling. Although different
sampling policies exist [3], in this work, we applied
sampling techniques at two different levels:
• Per-packet sampling: (or payload truncation)

this is performed on the packet level, through partially
inspecting the payload of each packet.
• Per-flow sampling: (or flow truncation) this is

performed on the flow level, through inspecting the full
payloads of a subset of packets per flow.

While sampling obviously provides a significant
impact on the processing times by reducing the size of
the input to process, it may have an unexpected impact on
the traffic classification.

However, what impact the traffic sampling process
would have on DPI classification accuracy, and which is
the preferred sampling technique to use in optimising
DPI, are important questions that we try to answer
through this work.

In an attempt to answer these questions, we present in
this paper, a study on the effect of traffic sampling on
identification accuracy by using one of the best DPI-
based tools: OpenDPI [4]. Our conducted identification
experiments were based on full payload dataset traffic as
captured through an institution’s Internet link. We tested
OpenDPI accuracy with per-packet sampling (using
incremental payload truncation lengths) and with Per-
flow sampling (using different number of sampled
packets per flow), keeping three goals in mind:
• To provide protocol oriented results for

classification accuracy.
• To compare the effect of both traffic sampling

techniques on OpenDPI accuracy and their required input.
• To draw conclusions on how far combined DPI

methods could be optimised through traffic sampling.
The remaining of this paper is organised as follows.

Section 2 provides an overview of payload based

JOURNAL OF NETWORKS, VOL. 8, NO. 1, JANUARY 2013 71

© 2013 ACADEMY PUBLISHER
doi: 10.4304/jnw.8.1.71-81

identification tools, methods and optimisations. Section 3
describes OpenDPI tool in the way it analyses and labels
packets and flows. Section 4 provides a description of the
testbed we used for the experiments. Our conducted
experiments and the obtained results in running the
OpenDPI tool, both with per-packet and per-flow
sampling techniques, are shown in Sections 5 and 6.
Section 7 compares the obtained results. Finally, Section
8 presents some conclusions and future work.

II. IDENTIFICATION OF FLOWS BASED ON PAYLOADS

Deep Packet Inspection” (DPI) is defined in [2] as
being “…a computer networking term that refers to
devices and technologies that inspect and take action
based on the contents of the packet (commonly called the
“payload”) rather than just the packet header.”

The most important parts of DPI are regular expression
matching and signature based scanning. In this technique
the payload of all the packets is checked against the set of
known protocol signatures.

Some well-known DPI technology based tools are
OpenDPI [4], an open source traffic classification tool,
L7-filter [5], an open source application layer classifier
for Linux's Netfilter, and Snort [6], an open source
network intrusion prevention and detection system. In
this paper, our choice was to use the OpenDPI tool since
it includes the latest DPI technology combined with other
techniques making it one of the most accurate classifiers.

Many authors attempted to enhance DPI accuracy by
combining it with other methods, such as behavioural [7],
statistical [8], port based [9] and DFI (Deep Flow
Identification) based methods [10].

On the other hand, many recent works attempted to
optimise DPI performance for high link speeds. Some of
them apply software based optimisation focused on
enhancing DPI algorithms, e.g. [11][12][13], while others
use hardware based optimisation e.g. [14].

In this paper, we will focus on a software optimisation
which consists on reducing the size of DPI input through
partial payload inspection. In this context, different
methods were proposed in the literature. For instance,
ML (Machine Learning) identification methods [1] use
the feature selection algorithm. On the other hand,
sampling techniques are more general and easy to
implement as they just try to reduce the size of the input
data by simply taking samples or parts from the data
according to a given criteria. This later approach could be
jointly applied with DPI. In fact, this is the scenario
considered in this work.

Sampling network traffic is the process of taking
partial observations from the monitored traffic, and
drawing conclusions about the behaviour of the system
from these sampled observations. They are mainly used
for network management and monitoring [15] although
may also be used in classification tasks e.g. [9][16][17].
As many works [3][18][19] show, sampling techniques
can be integrated within the traffic classification process.

Apparently, few works apply sampling to network
traffic classification. A detailed taxonomy of sampling
techniques according to the used method is provided in

[15]. Another way of categorising sampling techniques is
related to the target considered by the method. From this
point of view, they can be classified as per-packet
payload sampling [9][16], i.e. sampling bytes from within
the packet payload, per-flow packet sampling
[3][15][20][21], i.e. sampling a subset of packets from
within the whole traffic flow, or a combination of both
[17].

Per-packet sampling was shown in [16], where authors
proposed a novel approach that brings the sampling idea
to the regular expression field. Their approach, called
payload sampling, allows skipping a large portion of the
text in the payload, thus processing less bytes. Their
results show that the sampling approach is faster than
previous advanced solutions. However, the price to pay is
a slight number of false alarms which require a
confirmation stage.

Another example of per-packet byte sampling was
shown in [9] which also combined the port-based method
with the DPI approach. Using L7-Filter [5] DPI tool, one
of the paper’s targets was to study the amount of payload
information actually relevant in successful DPI matches.

For each session, L7-Filter attempts to match its
regular expression rules against the stream of payload
every time a new packet is seen. Their experimental
results showed that 72% of the total attempts happen at
the first packet of a flow. Moreover, they computed the
offset of matching regular expression’s first character and
last character from the beginning of the packets
respectively containing them. They showed that almost
all matching strings start (99.98%) and finish (90.77%) in
the first 32 bytes of payload.

Per-flow sampling [3] for DPI classification is shown
in many papers using different sampling techniques such
as: sampled NetFlow [20], related sampling [21], Bloom
filters [22][23], k-ary sketch [24], and mask-match
sampling [25]. In [27], we studied the effect of per-flow
sampling on DPI classification accuracy and showed that
more than 90% of OpenDPI classification accuracy is
maintained by sampling the first ten packets of each flow.

 The combination of per-flow and per-packet
sampling is addressed in [17]. In this work the authors
combined both sampling methods through the so-called
LW-DPI. Results showed that most flows can be
classified with only their first 7 packets or a fraction of
their payload.

Rather than presenting an exhaustive list of
comparisons of existing per-packet or per-flow sampling
policies, we preferred to compare at higher level, that is,
by choosing one representative technique from each
category for comparison purposes. The chosen techniques
were designed to focus on sampling the first payload
chunks: the first bytes of each packet’s payload and the
first packets of each flow. This is supposed to be an
efficient yet distinguished sampling method yielding up
to increased computational gain especially for large flows.
In fact, most works in the literature used continuous
sampling rates, which implies that the number of sampled
packets will increase as long as the flow is under course,
while it is fixed to a predefined number with the per-flow

72 JOURNAL OF NETWORKS, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER

sampling approach used in this work (as detailed in
Section 6).

Comparison is based on two main criterions: the effect
of sampling on the classification accuracy and the
required input size. We consider both sampling
techniques as eventual means of DPI optimisation as the
size of input will be reduced by only inspecting the
truncated part of the packet payload, with per-packet
sampling, and a subset of packets per flow, with per-flow
sampling.

III. OPENDPI

As previously stated, the tool of choice for the
classification of traffic is openDPI [4], which is derived
from the commercial PACE product from Ipoque [26].
On 2009, Ipoque announced that it succeeded to win a
test of deep packet inspection (DPI) bandwidth
management solutions for monitoring and regulating
peer-to-peer (P2P) traffic conducted by the European
Advanced Networking Tester Centre (EANTC). Test
results yield up to 99% detection and regulation accuracy
for all popular P2P protocols.

The core of OpenDPI is a software library designed to
classify internet traffic according to application protocols.
In [4] the authors explain that OpenDPI incorporates
different techniques such as behavioural (by searching for
known behavioural patterns of an application in the
monitored traffic) and statistical analysis (by calculating
some statistical indicators that can be used to identify
transmission types, as mean, median and variation of
values used in behavioural analysis and the entropy of a
flow).

Therefore, OpenDPI is not a pure-DPI product as it is
not only signature-based but also incorporates
information from other sources. This way, the
classification accuracy is improved (no false
classification according to Ipoque's claims), although
some packets and flows still remain unclassified. This,
together with the availability and quality of the signatures,
made us to select OpenDPI instead of any other similar
product.

In its current version, up to 101 different protocols can
be identified, including the most common ones as SIP
(Session initiation protocol), DNS (Domain Name
Service), HTTP (Hypertext Transfer Protocol), HTTPS
(Secure HTTP), FTP (File Transfer Protocol), and P2P
protocols such as eDonkey, DirectConnect, Bittorrent etc.

Nevertheless, and according to its functioning, the
capabilities of OpenDPI are mainly limited by the need to
analyse the whole payload of all the packets in a flow in
search of signatures (DPI behaviour) and to extract the
behavioural and statistical information from the flows.
Therefore, it is a basically full payload / full flow analysis
which imply a high computational cost. This way, it
would be desirable to reduce the size of the explored data
in order to reduce this computational cost, but without
degrading the performance of the classifier.

In this context, the target of this paper can be stated as
analysing how sensitive are the mechanisms involved in

OpenDPI to the per-packet and per-flow sampling
techniques.

IV. TESTBED

In order to evaluate the effects of truncating the
payloads in the traffic identification task, we have
developed an experimental setup built from two main
components. These components are a database of real
traffic captured in an academic network, and a tool to
automatically classify packets and flows according to
their payloads by primarily using Deep Packet Inspection
(DPI) which is based in OpenDPI.

Therefore, we have built a tool based on the OpenDPI
library which is able not only to identify the application
protocols but also to follow and differentiate the packets
in each flow. To be able to handle UDP packets, we have
generalized the concept of flow through the use of
sessions. Sessions are considered as defined by the
exchange of information associated to a tuple (IP
addresses, ports and transport protocol) [4]. Nevertheless,
throughout this paper, we will use the term flow to refer
to a session, unless explicitly stated. It was convenient
not only to apply sampling techniques on TCP sessions,
but on UDP sessions as well. In fact, experiments show
that application signatures are detected within UDP flows
and that the classification accuracy is affected
accordingly. Similarly to TCP based applications,
classification results for UDP based applications (such as
DNS and SIP) are protocol dependant, as shown in
section 6.

As the output of the tool, two levels of classifications
are provided: flow-based (each flow is labelled) and
packet-based (each packet is also labelled). The tool
operates in batch mode.

On the other hand, the traffic database contains the
data captured during 3 working days at the access link of
a medium size institution. The network consists of one
head office to which more than 50 branches are
connected according to a star topology. Local application
services such as Email, Web and DNS are hosted in the
head office which aggregates and controls all traffic
flows, generated by different branches, through one
central firewall. Through this network, around 4000
concurrent users are usually connected and generating
approximately 40000 concurrent flows.

The data acquisition was carried out at a border router
in the head office in order to be able to monitor all
incoming and outgoing traffic. Therefore, apart from the
boundaries of the caption, flows are captured complete
and in both directions. Table I highlights some figures of
the database.

By using the customized OpenDPI tool over the whole
database we have built the "ground truth", that is, the set
of correctly labelled flows and packets that will be used
as the reference when evaluating traffic sampling
techniques, in the following sections, where the
evaluation of the identification is measured in terms of
accuracy [1], that is, the percentage of detected
packets/flows in regard to the full payload case. This
procedure is adopted under the assumption that DPI is the

JOURNAL OF NETWORKS, VOL. 8, NO. 1, JANUARY 2013 73

© 2013 ACADEMY PUBLISHER

Figure 1. Distribution of packets (left) and flows (right) for most rele-

vant protocols or groups of protocols.

best currently available method for traffic classification
and that the number of errors is negligible. This is a
common approach in the traffic identification field, the
number of packets and flows that DPI is not able to
classify being its major limitation. In fact, some flows
are not classified by OpenDPI (labelled as unknown),
even when inspecting complete flows with full packet
payloads, i.e. without sampling. Evidently, when
sampling techniques are applied, these flows will remain
unclassified by OpenDPI. Nevertheless, when sampling
is applied, some of the flows, classified at the ground
truth, become unclassified. Consequently, in order to
highlight the effect of sampling on classification accuracy,
unknown flows at the ground truth level are not counted
when evaluating the flow accuracy under sampling.

 The results provided by the classification tool show
up to 42 protocols, including known web protocols such
as HTTP and FTP, voice over IP protocols, such as SIP,
and P2P applications such as Bittorrent, etc. Most of
these protocols have been identified in the database,
being HTTP the most frequent one, while an important
part of the flows and packets remain unclassified. The
relative distributions of flows and packets for most
relevant protocols are shown in Fig. 1. A first inspection
evidences big differences among the properties or
frequencies at flow and packet levels. Therefore, the
results can be different depending on whether we focus at
flow or packet levels.

In this work, we will evaluate sampling techniques and
their accuracy from the point of view of flow
classification, not individual packets. This is because
classifying flows is semantically more significant and
more adequate to most traffic engineering tasks.
Furthermore, flow classification is more efficient as all
the packets in a flow will be classified including even
those that do not contain any application-specific
signatures or patterns.

V. TRUNCATION OF THE PAYLOADS

In this section, we will show the conducted
experiments in running OpenDPI on partially truncated
packet payloads using the per-packet sampling technique.

Our main targets at this level are, as mentioned in
Section 1: To provide protocol oriented results for
accuracy as a function of the sampled input (truncation
length), and to show to what extent could the payload
truncation affect OpenDPI accuracy.

Through packet truncation, we intend to partially
inspect each packet’s payload. The studied sampling
technique is very simple: the classifier must parse only a
specified length of bytes (called payload truncation
length or S) within each packet’s payload. This is
supposed to decrease the global classification time for the
whole traffic.

As such, the per-packet sampling scheme we used is
defined as: “First S Bytes per packet”

A. Methodology for Truncation Experiments
To achieve our targets, we customized OpenDPI tool

to be able to parse only a specified length of bytes within

each packet’s payload. In order to obtain granular results,
our choice was to iterate with incremental truncation
length values with step of D Bytes, ranging from 0 Bytes
(no payload) to 1500 Bytes (full payload). We have
chosen D=128 Bytes.

The complete dataset we captured is very huge (63
pcap files totalling 177 GB) to use for the classification
experiments, joint with sampling. In fact, we needed to
run the customized OpenDPI up to 15 times on the same
set of capture files. Since the customized OpenDPI
requires around 50 minutes in classifying 1GB of capture
data, the tool was run on a subset of only 17 randomly
selected files (totalling 45 GB, i.e. 25% of the number of
pcap files) due to time constraint.

On the other hand, those packets and flows that were
not classified by OpenDPI when using the whole payload
are dismissed and not considered in the figures and
percentages that will be shown.

For this section, accuracy results are shown as a
function of the truncation lengths and grouped according
to three different sets: per protocol, per protocol group,
and for all the protocols. For this purpose, the protocols
were categorised into 12 groups that were defined
according to [26].

B. Global results
The results obtained for all the protocols are shown in

Fig. 2, where we show the number of successfully
classified packet (in red) and flows (in blue) as a function
of the length of the sample from each packet payload. At
packet level, a sudden drop in the accuracy for truncation
lengths lower than 1408 Bytes is observed. For 1280
Bytes, 47% of the packets were correctly classified, while
for 1408 Bytes, 99% of all the packets were identified.
On the other hand, the results at flow level show that for
truncation length equal to 512 Bytes, 57% of total flows

TABLE I.
FIGURES FOR THE CAPTURED TRAFFIC DATABASE.

Size of the database ~180 GB

Number of IP packet 278 Mpackets

Number of different IPs 822519

Number of flows 6.3 Mflows

Number of identified protocols 42

74 JOURNAL OF NETWORKS, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER

were detected, while for 1280 Bytes, 91% of flows were
detected. Therefore, the analysis is more tolerant to
payload truncation at flow levels than at packet levels.

 Thus, truncation length must be at least 1280 Bytes to
reach 50% of both flow and packet accuracy. This is not
a very encouraging result for DPI optimisation through
payload truncation as reducing only 15% of payload
input would lead to a 50% drop in OpenDPI packet
accuracy. However, results are encouraging if only flow
accuracy is the main concern since still 57% of flows can
be detected for 512 bytes of truncation.

From a macroscopic point of view, OpenDPI showed a
common behaviour for all protocols:
• The number of detected packets/flows is

increasing as the truncation length increases.
• For truncation length equal to 512 Bytes, 57% of

flows were detected while only 22% of packets were
detected.

C. Results per protocol group
When varying the truncation length, OpenDPI shows

different behaviour for different protocol groups.
As an example, results for web group packets and

flows are shown in Fig. 3.a. Web group results show that
truncation, though differently, is affecting both packet
and flow accuracy. In addition, web packet accuracy
seems to be more affected by truncation than flow
accuracy. It’s noticeable that packet classification
accuracy drops to around 50% for 1280 Bytes while for
flow accuracy it drops to 50% only if less than 512 Bytes
are truncated.

A different behaviour is observed for other groups. For
example, if we consider the IM (Internet Messaging
protocols) group –Fig. 3.b– or DNS group –Fig. 3.c– the
classification accuracy is only slightly affected by
truncation. In fact, for a truncation length equal to 256
Bytes, more than 50% of both packets and flows are
detected. The same applies for DNS packets and flows.

The results for P2P protocols exhibit a mixed
behaviour –Fig. 3.d– as they are similar to those from the
web group at packet level and to those from IM and DNS
groups at flow level. In fact, packet accuracy drops to
around 50% for 1280 Bytes while flow accuracy stays
above 92% even for 128 Bytes only.

In summary, at a granular level, the experimental
results showed different behaviour for OpenDPI with
truncation for different protocols. This in fact could be
based on two main factors: the stateful behaviour of some
protocols combined with the detection algorithm used by
OpenDPI which considers some behavioural and
statistical information for the whole flow.

We can evidence this assertion if we examine the
obtained results for the web and DNS protocol groups.
Since DNS is a stateless protocol, flows with truncated
packets can still be detected. On the other hand, as web is
a stateful protocol, the detection of web flows drops for
truncated packets. Though not shown, FTP results also
were different since FTP protocol has a special behaviour.

Figure 2. Global results for classification accuracy as a function of the

truncation length of the payloads.

JOURNAL OF NETWORKS, VOL. 8, NO. 1, JANUARY 2013 75

© 2013 ACADEMY PUBLISHER

Therefore, we can conclude that stateless protocols are
less sensitive to payload truncation than stateful ones.
Thus, optimising DPI/DFI methods through payload
truncation could be more effective for stateless and P2P
protocols.

For interpreting the differences between flow and
packet results for the same protocol, flow results are
considered more significant since undetected flows may
contain a huge number of packets thus affecting packet
accuracy. We also noticed that flows detected at higher
truncation length mostly contain a huge number of
packets.

As a result for per-packet sampling, studied in this
section, unless just a few bytes (not more than 128 Bytes)
were omitted from the end of the packet payload, payload
truncation with combined DPI/DFI will lead to many
unknown flows and packets. For instance, by inspecting
the full packet payload and omitting the last 512 bytes,
only 57% of flow accuracy can be maintained.

VI. TRUNCATION OF THE FLOWS

In this section, we will show the conducted
experiments in running OpenDPI on sampled flows using
the per-flow sampling technique.

Our main targets at this level are, as mentioned in
Section: To provide protocol oriented results for
accuracy as a function of the sampled input (number of
inspected packets per flow) and to show to what extent
could the flow truncation affect OpenDPI accuracy.

For comparison purposes with per-packet sampling,
we conducted per-flow sampling experiments to obtain
results for the same protocol groups, shown in Figures 2
and 3 of the previous section.

The methodology we used for flow truncation is
described in [27], where we intend only to inspect, within
each flow, the packets whose ordinal number inside the
flow is lower than a predefined threshold (Nmin). With
this sampling scheme, while inspecting only the first Nmin

As such, the per-flow sampling scheme we used is
defined as: “N

packets of the flow for the purpose of classification, the
classifier will still handle the remaining packets for the
purpose of assigning them to the flow. The difference is
that for these packets the inspection part is to be omitted,
and this is where the concept of optimisation comes:
Through flow-sampling, we emphasize on the inspection
time as we consider it to be the only sensitive term to
flow truncation. In other words, the sampling speed-up in
terms of CPU processing time comes only from
speeding-up the flow classification itself, but there is no
gain in the operation of mapping packets to flows, as this
operation is independent and untouched.

min

A. Methodology for Truncation Experiments

 packets per flow”

In this Section, we used the same OpenDPI
customization we performed in [27], on which we run on
a subset of randomly selected files from our original
dataset, since the main dataset is very huge. This
customization allowed us to output the packet ordinal
number inside the flow the packet belongs to at which

(a)

 (b)

(c)

(d)

Figure 3. Results for various protocols/groups as a function of the
truncation length for packets and flows. a) Web; b) Instant messaging;

c) DNS; and d) P2P.

76 JOURNAL OF NETWORKS, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER

detection is achieved, referred to as packet detection
number or flow detection number. In addition, we were
able to generate accuracy results for different numbers of
sampled packets per flow (Nmin

As in the previous section, flow accuracy results are
shown in terms of number of successfully classified
flows as a function of the number of sampled packets
from the beginning of the flow. Again, these results are
grouped according to three different sets: per protocol,
per protocol group, and for all the protocols.

), without effectively
truncating the flows.

B. Global Results
Fig. 4 shows the percentage of flows that have been

classified vs. the number of sampled packets. As we can
see, most flows are detected by inspecting the few first
packets. Specifically, within the first ten packets
(Nmin=10), most protocols are being detected with an
accuracy value of 99%. As also depicted in Fig. 4, flow
accuracy is near 90% for Nmin=4. Only a slight increase
in accuracy is obtained for Nmin values greater than 10.
For these reasons, Nmin=4 or Nmin

C. Results per Protocol Group

=10 could be
considered critical values for the per-flow sampling
scheme, according to the required level of accuracy and
the required level of classification speed-up.

Results for the same protocol groups tested in the
previous section are now shown in Fig. 5. The DNS
group in Fig. 5.c seems to be the less sensitive protocol to
flow truncation, as it’s being classified by OpenDPI by
inspecting solely the first packet with a 99% of
classification accuracy. Other protocol groups are shown
as well, like Web in Fig. 5.a, and Instant Messaging in
Fig. 5.b. The same result as seen globally for all protocols
persists: at least four packets are required to be inspected
to reach an accuracy level of 90% and above. Results for
P2P are shown in Fig. 5.d where 84% of accuracy can
still be reached for Nmin

D. Results per Protocol

 =4. If the classifier inspects the
first ten packets of a P2P flow, 99.15% of classification
accuracy can be reached as well.

The average packet detection number in the dataset is

Figure 4. Global results for flow accuracy as a function of the packet

detection number.

(a)

 (b)

(c)

(d)

Figure 5. Flow accuracy results for various protocols/groups as a
function of the packet detection number. a) Web; b) Instant messaging;

c) DNS; and d) P2P.

JOURNAL OF NETWORKS, VOL. 8, NO. 1, JANUARY 2013 77

© 2013 ACADEMY PUBLISHER

shown in Fig. 6 for most common protocols.
Some protocols like iMESH and Bittorrent, show

higher values than other protocols. We validated the fact
that the presence of most deviation is due to flows that
were under course during the start of the capture. Most
protocols averages were below 10 packets. To validate
this fact, we generated results per individual protocol. For
instance, Fig. 7 shows the histogram of flow accuracy for
some selected protocols like SIP (Fig. 7.a), FTP (Fig. 7.b),
and HTTPS (Fig. 7.c). It can be noticed that about 90%
of flow accuracy is reached by inspecting the first 6
packets.

As a result for per-flow sampling, studied in this
section, inspecting the first 4 to 10 packets of a flow (as
DPI input for inspection) could maintain the flow
classification accuracy at high levels ranging from 90%
to 99%.

In choosing the appropriate value of Nmin

If the target is to classify only one specific protocol,
N

 for the
classifier, two situations should be distinguished
according to the classification target:

min could be easily specified according to Fig. 6 (e.g. for
HTTP, Nmin=4). In this case, the classifier would inspect
only the minimum number of packets, necessary for flow
classification. However, if the target is to classify all
protocols, which is the most common situation, Nmin
should be assigned the maximum value of the average
packet detection number (Nmin=10) in order to classify
most protocols. In this case, and for protocols whose
average packet detection number is lower than Nmin

E. Computational Measurement

, the
classifier would inspect more packets than necessary.

To highlight the optimisation aspect of sampling
approaches, we choose to measure the computational
gain in processing time for the per-flow sampling
technique. Specifically, we measure the processing time
consumed by the classification modules inside the
classifier’s code. As mentioned previously, through the
flow sampling process, only the inspection time is
optimised and not the packet handling time.

Experiments show that compared to full flow sampling,
the per-flow sampling approach can provide 9% of
computational time gain and 99% of classification
accuracy, when only the first 20 packets (Nmin

In comparing to EIM (Equidistant Invariable Mode) [3]
having a sampling rate of 7/13, 36% of classification time
can be saved due to inspecting less packets with the per-
flow sampling approach (for N

=20) are
inspected.

min

VII. RESULTS COMPARISON AND ANALYSIS

=20).

A. Results Comparison
Table II shows the comparison results as summarized

for both sampling techniques, according to the provided
flow classification accuracy and the required DPI input.
The percentage of input reduction is not shown in this
table since it is dataset-dependent and can be simply

estimated according to the average number of packets per
flow, and the average packet size.

Results shown in Table II indicate that in order to
obtain around 90% of flow accuracy, it’s mandatory to
inspect the first 1280 payload bytes of each packet (as
DPI input for inspection), while inspecting the first 4
packets with full payload per flow is sufficient to obtain
the same accuracy level. For higher accuracy results at
99%, the first 1408 of payload bytes are required per
packet compared to the first 10 packets with full payload
per flow.

For the dataset we used, the average number of packets

TABLE II.
COMPARISON BETWEEN PER-FLOW AND PER-PACKET SAMPLING

SCHEMES USED FOR DPI OPTIMISATION

Sampling Scheme
used for DPI Optimi-

sation
Required Input

Flow classi-
fication

accuracy

Per-packet payload
sampling

First 1280 bytes of
payload, per packet 91%

First 1408 bytes of
payload, per packet 99%

Per-flow packet sam-
pling

First 4 packets with
full payload, per flow 90 %

First 10 packets with
full payload, per flow 99%

Figure 6. Average detection packet number for each individual proto-

col.

78 JOURNAL OF NETWORKS, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER

per flow is 45 packets and the average packet size is 233
Bytes. Thus, in order to obtain at least 90% of flow
accuracy, 932 Bytes will be required for inspection with
the per-flow sampling compared to 10,485 Bytes with the
per-packet sampling.

Thus, compared to per-packet sampling, the per-flow
sampling technique will provide higher flow
classification accuracy at a cost of less input. Apparently,
this applies only to traffic having, on average, more than
4 packets per flow and less than 1400 Bytes per packet,
which is common for traffic of most known protocols, as
shown in the dataset we used.

Moreover, per-packet sampling leads to many
unknown packets, and the packet accuracy drops to 47%
when the packet truncation length is 1280 bytes, as
depicted in Fig. 2. Thus, optimising DPI/DFI methods
through payload truncation could not be considered
generally effective (especially when the set includes
stateful protocols, which are the more affected).

Obviously, the best trade-off between the required DPI
input size and the provided classification accuracy in
Table II is with the per-flow sampling when only the first
4 packets with full payload are inspected per flow.

As a result, according to the sampling schemes we
defined and regardless of the traffic dataset being tested,
the following result can be generalized:

For DPI optimisation, the per–flow sampling
technique is more convenient than the per-packet
sampling technique, in terms of the required input and
the provided classification accuracy.

B. Results Analysis
One interpretation for the obtained result is that by

combining DPI with other technologies (such as
behavioural and statistical modelling), the task of DPI
optimisation through per-packet sampling or payload
truncation may render the identification method itself
inefficient since the non-parsed part of the data may still
be needed for the other added technology. However, to
validate this assertion, further experiments are required,
in which the pure DPI technique is to be separated from
other helper technologies. The per-packet payload
truncation can still be useful as an optimisation if, instead
of classifying all the traffic, the target is to select some of
them based on the application content and depending on
the nature of the associated protocol.

With the per-flow sampling, better results are obtained
only if the first packets were sampled. This can be
interpreted by the fact that the first packets usually signal
the application protocol in use, during the first phase of
flow set-up, and are thus of high importance for the
classification process.

On the other hand, the default behaviour for PBFS
(Packet Based Per Flow State) classifiers [28] is that the
entire session must be “marked” as soon as one packet is
detected to be holding an application signature.”

However, not all DPI classifiers are PBFS based, and
for some particular cases, not all flows belonging to the
same application protocol should be necessarily detected
at the same packet detection number. For instance, when

the packet holding the signature is delayed or lost, more
packets will be inspected until the flow protocol is
detected at higher packet numbers or simply marked as
unknown. As for the OpenDPI tool, we were able to
prove its PBFS like behaviour both theoretically, by
interpreting the classifier’s code in Section 6.A, and

(a)

 (b)

(c)

Figure 7. Flow accuracy results for two selected protocols as a func-
tion of the packet detection number. a) SIP; b) FTP and c) HTTPS.

JOURNAL OF NETWORKS, VOL. 8, NO. 1, JANUARY 2013 79

© 2013 ACADEMY PUBLISHER

practically, by interpreting results for the average packet
detection number (being nearly the same per protocol, in
Fig. 6) and for the classification time gain (being
moderate, in Section 6.E).

VIII. CONCLUSIONS AND FUTURE WORK

In this paper we explored the effects of sampling on
traffic classification accuracy using OpenDPI. Traffic
sampling is considered one of the means of DPI
optimisation as it reduces the required input size for the
classifier. Two sampling techniques were tested and
compared: per-packet sampling (through partial payload
inspection) and per-flow sampling (through inspecting
only a few packets per flow). Comparison is
accomplished according to the reduction in the input size
and the maintained classification accuracy.

Results show that flow accuracy is less sensitive to
flow truncation than to packet payload truncation. With
per-packet payload sampling, unless just few bytes (not
more than the last 128 Bytes) were omitted during the
packet payload inspection, per-packet sampling (or
payload truncation) will lead to many unknown packets
and flows. With per-flow packet sampling, inspecting the
first 4 to 10 packets per flow could maintain flow
accuracy at higher levels, ranging from 90% to 99%.

As a result, the per–flow sampling technique is more
convenient than the per-packet sampling technique for
DPI optimisation.

To provide more richness to this work, future
enhancements may include comparing existing sampling
methods within the same category (per-flow and per-
packet), in which computational gain is evaluated in
terms of both processing time and memory usage.
Enhancements may involve as well other advanced DPI
tools to discard any possible bias to OpenDPI, our best
tool of choice.

Finally, in seeking for DPI optimisation through
sampling, future enhancements should involve additional
experiments which should integrate different techniques
in order to define the optimal sampling scheme for the
DPI classification process. Once the required input for
the DPI classifier is optimally reduced, other DPI
optimisation means, as found in the literature, could be
used jointly to complete the job of DPI optimisation.

ACKNOWLEDGMENT

This work has been supported by Spanish MICINN
under project TEC2008-06663-C03-02.

REFERENCES

[1] T. Nguyen, G. Armitage, “A Survey of Techniques for
Internet Traffic Classification using Machine Learning”,
IEEE Communications Surveys & Tutorials, 2007, vol. 10,
pp. 56-76, doi: 10.1109/SURV.2008.080406.

[2] Allot Communications, 2007. Digging Deeper Into Deep
Packet Inspection (DPI). White paper. Available at
http://www.dpacket.org 20.01.2012

[3] H. Chen, F. You, X. Zhou, and C. Wang, "The study of
DPI identification technology based on sampling", ICIECS
2009, 2009, pp. 1-4, doi: 10.1109/ICIECS.2009.5363202.

[4] Opendpi. http://www.opendpi.org/ 20.01.2012
[5] L7filter. http://l7-filter.clearfoundation.com/ 20.01.2012
[6] Snort. http://www.snort.org 20.01.2012
[7] L. Zhang, D. Li, J. Shi and J. Wang, “P2P-based Weighted

Behavioral Characteristics Of Deep Packet Inspection Al-
gorithm, In Proc. of CMCE 2010, 2010, pp. 468-470, doi:
10.1109/CMCE.2010.5610457.

[8] F. Dehghani, N. Movahhedinia, M. Khayyambashi, and S.
Kianian, “Real-time Traffic Classification Based on Statis-
tical and Payload Content Features”, In Proc. IWISA 2010,
2010. pp. 1-4, doi: 10.1109/IWISA.2010.5473467.

[9] G. Aceto, A. Dainotti, W. de Donato, and A. Pescapé,
"PortLoad: taking the best of two worlds in traffic classifi-
cation”, In Proc. of INFOCOM 2010, 2010, pp. 1-5, doi:
10.1109/INFCOMW.2010.5466645.

[10] C. Wang, X. Zhou, F. You, and H. Chen, "Design of P2P
Traffic Identification Based on DPI and DFI”, In Proc. of
CNMT2009, 2009, pp. 1-4, doi:
10.1109/CNMT.2009.5374577.

[11] Y. Yang, H. Le, and V. Prasanna, “High Performance Dic-
tionary-Based String Matching for Deep Packet Inspec-
tion”, In Proc. of INFOCOM 2010, 2010, pp. 1-5, doi:
10.1109/INFCOM.2010.5462268.

[12] P. Lin, Y. Lin, T. Lee, and Y. Lai, “Using String Matching
for Deep Packet Inspection”, IEEE Computer, 2008, vol.
41, pp. 23-28, doi: 10.1109/MC.2008.138.

[13] G. La Mantia, D. Rossi, A. Finamore, M. Mellia, and M.
Meo, “Stochastic Packet Inspection for TCP Traffic”, In
Proc. ICC2010, 2010, pp. 1-6, doi:
10.1109/ICC.2010.5502280.

[14] A. Rao and P. Udupa, “A Hardware Accelerated System
For Deep Packet Inspection”, In Proc. MEMOCODE’10,
2010, pp. 89-92, doi: 10.1109/MEMCOD.2010.5558646.

[15] R. Jurga and M. Hulbój, "Packet Sampling for Network
Monitoring”, Technical Report, CERN | HP Procurve
openlab project. Available at http://www.zdnetasia.com
20.1.2012

[16] D. Ficara, G. Antichi, A. Di Pietro, S. Giordano, G. Pro-
cissi, and F. Vitucci "Sampling Techniques to Accelerate
Pattern Matching in Network Intrusion Detection Systems”,
In Proc. ICC2010, 2010, pp. 1-5, doi:
10.1109/ICC.2010.5501751.

[17] S. Fernandes, R. Antonello, T. Lacerda, A. Santos, D.
Sadok, and T. Westholm, "Slimming Down Deep Packet
Inspection Systems”, In Proc. INFOCOM Workshops 2009,
2009, pp. 1-6, doi: 10.1109/INFCOMW.2009.5072188 .

[18] Z. Guo and Z. Qiu, "Identification Peer-to-Peer Traffic for
High Speed Networks Using Packet Sampling and Appli-
cation Signatures", In Proc. ICSP2008, pp. 2013-2019, doi:
10.1109/ICOSP.2008.4697540.

[19] M. Canini, D. Fay, D. Miller, A. Moore, and R. Bolla, "Per
Flow Packet Sampling for High-Speed Network Monitor-
ing”, In Proc. COMSNETS'09, 2009, pp. 1-10, doi:
10.1109/COMSNETS.2009.4808888.

[20] V. Carela-Español, P. Barlet-Ros, A. Cabellos-Aparicio,
and J. Solé-Pareta, "Analysis of the impact of sampling on
NetFlow traffic classification”, Computer Networks,
Volume 55, Issue 5, 1 April 2011, pp. 1083-1099.

[21] M. Lee, M. Hajjat, R. Kompella, and S. Rao, "RelSamp:
Preserving Application Structure in Sampled Flow Meas-
urements”, In Proc. INFOCOM 2011, 2011, pp. 2354-
2362, doi: 10.1109/INFCOM.2011.5935054.

[22] S. Dharmapurikar, P. Krishnamurthy, T. Sproull, and J.
Lockwood, "Deep Packet Inspection using Parallel Bloom
Filters", In Proc. High Performance Interconnects 2003,
2003, pp. 44-51, doi: 10.1109/CONECT.2003.1231477.

80 JOURNAL OF NETWORKS, VOL. 8, NO. 1, JANUARY 2013

© 2013 ACADEMY PUBLISHER

[23] Y. Li "Memory Efficient Parallel Bloom Filters for String
Matching", In Proc. NSWCTC 2009, 2009, pp.485-488,
doi: 10.1109/NSWCTC.2009.280.

[24] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen,
“Sketch-based change detection: methods, evaluation, and
applications”, In Proc. of ACM SIGCOMM Internet
Measurement Conference IMC’03, October 2003, doi: .

[25] R. Cong, J. Yang and G. Cheng, "Research of Sampling
Method Applied To Traffic Classification", In Proc. ICCT
2010, 2010, pp. 112-115, doi:
10.1109/ICCT.2010.5689208.

[26] Ipoque. http://www.ipoque.com/ 20.01.2012
[27] J. Khalife, J. Verdejo, and A. Hajjar, “On the Performance

of OpenDPI in Identifying P2P Truncated Flows”, AP2PS
2011, Lisbon, Portugal, 2011.

[28] F. Risso, M. Baldi, O. Morandi, A. Baldini, and P. Mon-
clus "Lightweight, Payload-Based Traffic Classification:
An Experimental Evaluation", In Proc. ICC 2008, 2008, pp.
5869-5875.

Jawad khalife born in Lebanon, 1980,
holds a master’s degree in
telecommunications networks,
University of Saint-Joseph, Beirut,
Lebanon, 2003, and an engineering
degree in computer and communication,
the Lebanese University, Beirut,
Lebanon, 2002. Since 2004, his teaching
activities covered mainly network-

related topics including network administration under Linux,
Cisco and security courses in well-known faculties and
institutions in Lebanon. Since 2002, he works as a Network
Engineer in the central administration of the Lebanese
university, Beirut, Lebanon. His current research interests
covers enhancing traffic classification methods and their use in

the security field, especially for intrusion detection systems.
Eng. Khalife is a student member of IEEE.

Amjad S. Hajjar was born on May 12,
1964 in Chehim, Lebanon. He obtained
his engineering diploma in electricity
and electronics from the Lebanese
university in 1986, and his Ph.D in
computer-aided design (CAD) from the
university of Paris-VI in 1992. He is
currently assistant professor at the
faculty of engineering of the Lebanese
University, where he teaches computer

networks, operations research and operating systems. His fields
of interest in research are peer-to-peer (P2P) networks, traffic
analysis and P2P activity detection.

Jesús Díaz Verdejo is a professor in the
Department of Signal Theory,
Telematics and Communications of the
University of Granada. He received his
B.Sc. in physics in 1989 and a Ph.D.
degree in physics in 1995 from the
University of Granada.

His initial research interest was
related to speech technologies,
especially automatic speech recognition.

He is currently working on computer and network security,
mainly focused in intrusion detection systems and traffic
engineering from the point of view of security. He has also
developed some work in telematics applications and e-learning
systems.

JOURNAL OF NETWORKS, VOL. 8, NO. 1, JANUARY 2013 81

© 2013 ACADEMY PUBLISHER

