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Abstract—The identification of the nature of the traffic 
flowing through a TCP/IP network is a relevant target for 
traffic engineering and security related tasks. Despite the 
privacy concerns it arises, Deep Packet Inspection (DPI) is 
one of the most successful current techniques. Nevertheless, 
the performance of DPI is strongly limited by computational 
issues related to the huge amount of data it needs to handle, 
both in terms of number of packets and the length of the 
packets. One way to reduce the computational overhead 
with identification techniques is to sample the traffic being 
monitored. This paper addresses the sensitivity of OpenDPI, 
one of the most powerful freely available DPI systems, with 
sampled network traffic. Two sampling techniques are 
applied and compared: the per-packet payload sampling, 
and the per-flow packet sampling. Based on the obtained 
results, some conclusions are drawn to show how far DPI 
methods could be optimised through traffic sampling. 
 
Index Terms— network traffic identification, deep packet 
inspection, optimisation, payload truncation, flow 
truncation, traffic sampling 
 

I.  INTRODUCTION 

Network traffic identification aims to classify packets 
(packet-based identification) or flows (flow-based 
identification) in a given network according to the 
associated application protocol. Traditionally, this task 
has been considered quite simple as ports were assigned 
for many application protocols. In this scenario a simple 
inspection of transport layer header suffices to identify 
the underlying protocol. Nevertheless, this situation is 
changing, thus making traffic identification a hot research 
topic, as some Internet applications, such as P2P, are 
becoming more and more challenging to identification 
techniques by using port obfuscation, encryption, and/or 
tunnelling [1]. One of the most successful methods 
currently available to identify traffic is based on the 
examination of the payloads to find known protocol 
patterns or signatures (e.g. “GET * HTTP”). This is the 
so-called DPI (Deep Packet Inspection) [2].  

However, in today’s networks, performance and 
privacy issues are two important factors that are 
considered some of the weaknesses of DPI. On the other 
hand, DPI is not able to inspect ciphered payloads. This 
fact is pushing researchers for alternate solutions in 

which P2P identification is still considered a complex 
task, especially when DPI is not involved at all. 

As such, one of the current research trends is to 
optimise current DPI based identification methods 
characterised by their high accuracy, while keeping at the 
same time an acceptable level of user privacy and 
performance.  

One of the DPI optimisation means is to reduce the 
input size through traffic sampling. Although different 
sampling policies exist [3], in this work, we applied 
sampling techniques at two different levels:  
• Per-packet sampling: (or payload truncation) 

this is performed on the packet level, through partially 
inspecting the payload of each packet. 
• Per-flow sampling: (or flow truncation) this is 

performed on the flow level, through inspecting the full 
payloads of a subset of packets per flow.  

While sampling obviously provides a significant 
impact on the processing times by reducing the size of 
the input to process, it may have an unexpected impact on 
the traffic classification.  

However, what impact the traffic sampling process 
would have on DPI classification accuracy, and which is 
the preferred sampling technique to use in optimising 
DPI, are important questions that we try to answer 
through this work.  

In an attempt to answer these questions, we present in 
this paper, a study on the effect of traffic sampling on 
identification accuracy by using one of the best DPI-
based tools: OpenDPI [4]. Our conducted identification 
experiments were based on full payload dataset traffic as 
captured through an institution’s Internet link. We tested 
OpenDPI accuracy with per-packet sampling (using 
incremental payload truncation lengths) and with Per-
flow sampling (using different number of sampled 
packets per flow), keeping three goals in mind:  
• To provide protocol oriented results for 

classification accuracy.  
• To compare the effect of both traffic sampling 

techniques on OpenDPI accuracy and their required input. 
• To draw conclusions on how far combined DPI 

methods could be optimised through traffic sampling. 
The remaining of this paper is organised as follows. 

Section 2 provides an overview of payload based 

JOURNAL OF NETWORKS, VOL. 8, NO. 1, JANUARY 2013 71

© 2013 ACADEMY PUBLISHER
doi: 10.4304/jnw.8.1.71-81



identification tools, methods and optimisations. Section 3 
describes OpenDPI tool in the way it analyses and labels 
packets and flows. Section 4 provides a description of the 
testbed we used for the experiments. Our conducted 
experiments and the obtained results in running the 
OpenDPI tool, both with per-packet and per-flow 
sampling techniques, are shown in Sections 5 and 6. 
Section 7 compares the obtained results. Finally, Section 
8 presents some conclusions and future work. 

II.  IDENTIFICATION OF FLOWS BASED ON PAYLOADS  

Deep Packet Inspection” (DPI) is defined in [2] as 
being “…a computer networking term that refers to 
devices and technologies that inspect and take action 
based on the contents of the packet (commonly called the 
“payload”) rather than just the packet header.” 

The most important parts of DPI are regular expression 
matching and signature based scanning. In this technique 
the payload of all the packets is checked against the set of 
known protocol signatures. 

Some well-known DPI technology based tools are 
OpenDPI [4], an open source traffic classification tool, 
L7-filter [5], an open source application layer classifier 
for Linux's Netfilter, and Snort [6], an open source 
network intrusion prevention and detection system. In 
this paper, our choice was to use the OpenDPI tool since 
it includes the latest DPI technology combined with other 
techniques making it one of the most accurate classifiers. 

Many authors attempted to enhance DPI accuracy by 
combining it with other methods, such as behavioural [7], 
statistical [8], port based [9] and DFI (Deep Flow 
Identification) based methods [10].  

On the other hand, many recent works attempted to 
optimise DPI performance for high link speeds. Some of 
them apply software based optimisation focused on 
enhancing DPI algorithms, e.g. [11][12][13], while others 
use hardware based optimisation e.g. [14].  

In this paper, we will focus on a software optimisation 
which consists on reducing the size of DPI input through 
partial payload inspection. In this context, different 
methods were proposed in the literature. For instance, 
ML (Machine Learning) identification methods [1] use 
the feature selection algorithm. On the other hand, 
sampling techniques are more general and easy to 
implement as they just try to reduce the size of the input 
data by simply taking samples or parts from the data 
according to a given criteria. This later approach could be 
jointly applied with DPI. In fact, this is the scenario 
considered in this work.  

Sampling network traffic is the process of taking 
partial observations from the monitored traffic, and 
drawing conclusions about the behaviour of the system 
from these sampled observations. They are mainly used 
for network management and monitoring [15] although 
may also be used in classification tasks e.g. [9][16][17]. 
As many works [3][18][19] show, sampling techniques 
can be integrated within the traffic classification process. 

Apparently, few works apply sampling to network 
traffic classification. A detailed taxonomy of sampling 
techniques according to the used method is provided in 

[15]. Another way of categorising sampling techniques is 
related to the target considered by the method. From this 
point of view, they can be classified as per-packet 
payload sampling [9][16], i.e. sampling bytes from within 
the packet payload, per-flow packet sampling 
[3][15][20][21], i.e. sampling a subset of packets from 
within the whole traffic flow, or a combination of both 
[17]. 

Per-packet sampling was shown in [16], where authors 
proposed a novel approach that brings the sampling idea 
to the regular expression field. Their approach, called 
payload sampling, allows skipping a large portion of the 
text in the payload, thus processing less bytes. Their 
results show that the sampling approach is faster than 
previous advanced solutions. However, the price to pay is 
a slight number of false alarms which require a 
confirmation stage.  

Another example of per-packet byte sampling was 
shown in [9] which also combined the port-based method 
with the DPI approach. Using L7-Filter [5] DPI tool, one 
of the paper’s targets was to study the amount of payload 
information actually relevant in successful DPI matches.  

For each session, L7-Filter attempts to match its 
regular expression rules against the stream of payload 
every time a new packet is seen. Their experimental 
results showed that 72% of the total attempts happen at 
the first packet of a flow. Moreover, they computed the 
offset of matching regular expression’s first character and 
last character from the beginning of the packets 
respectively containing them. They showed that almost 
all matching strings start (99.98%) and finish (90.77%) in 
the first 32 bytes of payload.  

Per-flow sampling [3] for DPI classification is shown 
in many papers using different sampling techniques such 
as: sampled NetFlow [20], related sampling [21], Bloom 
filters [22][23], k-ary sketch [24], and mask-match 
sampling [25]. In [27], we studied the effect of per-flow 
sampling on DPI classification accuracy and showed that 
more than 90% of OpenDPI classification accuracy is 
maintained by sampling the first ten packets of each flow. 

  The combination of per-flow and per-packet 
sampling is addressed in [17]. In this work the authors 
combined both sampling methods through the so-called 
LW-DPI. Results showed that most flows can be 
classified with only their first 7 packets or a fraction of 
their payload.  

Rather than presenting an exhaustive list of 
comparisons of existing per-packet or per-flow sampling 
policies, we preferred to compare at higher level, that is, 
by choosing one representative technique from each 
category for comparison purposes. The chosen techniques 
were designed to focus on sampling the first payload 
chunks: the first bytes of each packet’s payload and the 
first packets of each flow. This is supposed to be an 
efficient yet distinguished sampling method yielding up 
to increased computational gain especially for large flows. 
In fact, most works in the literature used continuous 
sampling rates, which implies that the number of sampled 
packets will increase as long as the flow is under course, 
while it is fixed to a predefined number with the per-flow 
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sampling approach used in this work (as detailed in 
Section 6). 

Comparison is based on two main criterions: the effect 
of sampling on the classification accuracy and the 
required input size. We consider both sampling 
techniques as eventual means of DPI optimisation as the 
size of input will be reduced by only inspecting the 
truncated part of the packet payload, with per-packet 
sampling, and a subset of packets per flow, with per-flow 
sampling.  

III.  OPENDPI  

As previously stated, the tool of choice for the 
classification of traffic is openDPI [4], which is derived 
from the commercial PACE product from Ipoque [26]. 
On 2009, Ipoque announced that it succeeded to win a 
test of deep packet inspection (DPI) bandwidth 
management solutions for monitoring and regulating 
peer-to-peer (P2P) traffic conducted by the European 
Advanced Networking Tester Centre (EANTC). Test 
results yield up to 99% detection and regulation accuracy 
for all popular P2P protocols. 

The core of OpenDPI is a software library designed to 
classify internet traffic according to application protocols. 
In [4] the authors explain that OpenDPI incorporates 
different techniques such as behavioural (by searching for 
known behavioural patterns of an application in the 
monitored traffic) and statistical analysis (by calculating 
some statistical indicators that can be used to identify 
transmission types, as mean, median and variation of 
values used in behavioural analysis and the entropy of a 
flow). 

Therefore, OpenDPI is not a pure-DPI product as it is 
not only signature-based but also incorporates 
information from other sources. This way, the 
classification accuracy is improved (no false 
classification according to Ipoque's claims), although 
some packets and flows still remain unclassified. This, 
together with the availability and quality of the signatures, 
made us to select OpenDPI instead of any other similar 
product. 

In its current version, up to 101 different protocols can 
be identified, including the most common ones as SIP 
(Session initiation protocol), DNS (Domain Name 
Service), HTTP (Hypertext Transfer Protocol), HTTPS 
(Secure HTTP), FTP (File Transfer Protocol), and P2P 
protocols such as eDonkey, DirectConnect, Bittorrent etc.  

Nevertheless, and according to its functioning, the 
capabilities of OpenDPI are mainly limited by the need to 
analyse the whole payload of all the packets in a flow in 
search of signatures (DPI behaviour) and to extract the 
behavioural and statistical information from the flows. 
Therefore, it is a basically full payload / full flow analysis 
which imply a high computational cost. This way, it 
would be desirable to reduce the size of the explored data 
in order to reduce this computational cost, but without 
degrading the performance of the classifier. 

In this context, the target of this paper can be stated as 
analysing how sensitive are the mechanisms involved in 

OpenDPI to the per-packet and per-flow sampling 
techniques. 

IV.  TESTBED  

In order to evaluate the effects of truncating the 
payloads in the traffic identification task, we have 
developed an experimental setup built from two main 
components. These components are a database of real 
traffic captured in an academic network, and a tool to 
automatically classify packets and flows according to 
their payloads by primarily using Deep Packet Inspection 
(DPI) which is based in OpenDPI.  

Therefore, we have built a tool based on the OpenDPI 
library which is able not only to identify the application 
protocols but also to follow and differentiate the packets 
in each flow. To be able to handle UDP packets, we have 
generalized the concept of flow through the use of 
sessions.  Sessions are considered as defined by the 
exchange of information associated to a tuple (IP 
addresses, ports and transport protocol) [4]. Nevertheless, 
throughout this paper, we will use the term flow to refer 
to a session, unless explicitly stated. It was convenient 
not only to apply sampling techniques on TCP sessions, 
but on UDP sessions as well. In fact, experiments show 
that application signatures are detected within UDP flows 
and that the classification accuracy is affected 
accordingly. Similarly to TCP based applications, 
classification results for UDP based applications (such as 
DNS and SIP) are protocol dependant, as shown in 
section 6. 

As the output of the tool, two levels of classifications 
are provided: flow-based (each flow is labelled) and 
packet-based (each packet is also labelled). The tool 
operates in batch mode.  

On the other hand, the traffic database contains the 
data captured during 3 working days at the access link of 
a medium size institution. The network consists of one 
head office to which more than 50 branches are 
connected according to a star topology. Local application 
services such as Email, Web and DNS are hosted in the 
head office which aggregates and controls all traffic 
flows, generated by different branches, through one 
central firewall. Through this network, around 4000 
concurrent users are usually connected and generating 
approximately 40000 concurrent flows. 

The data acquisition was carried out at a border router 
in the head office in order to be able to monitor all 
incoming and outgoing traffic. Therefore, apart from the 
boundaries of the caption, flows are captured complete 
and in both directions. Table I highlights some figures of 
the database. 

By using the customized OpenDPI tool over the whole 
database we have built the "ground truth", that is, the set 
of correctly labelled flows and packets that will be used 
as the reference when evaluating traffic sampling 
techniques, in the following sections, where the 
evaluation of the identification is measured in terms of 
accuracy [1], that is, the percentage of detected 
packets/flows in regard to the full payload case. This 
procedure is adopted under the assumption that DPI is the 
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Figure 1. Distribution of packets (left) and flows (right) for most rele-

vant protocols or groups of protocols. 

 

best currently available method for traffic classification 
and that the number of errors is negligible. This is a 
common approach in the traffic identification field, the 
number of packets and flows that DPI is not able to 
classify being its major limitation.  In fact, some flows 
are not classified by OpenDPI (labelled as unknown), 
even when inspecting complete flows with full packet 
payloads, i.e. without sampling. Evidently, when 
sampling techniques are applied, these flows will remain 
unclassified by OpenDPI. Nevertheless, when sampling 
is applied, some of the flows, classified at the ground 
truth, become unclassified. Consequently, in order to 
highlight the effect of sampling on classification accuracy, 
unknown flows at the ground truth level are not counted 
when evaluating the flow accuracy under sampling.  

 The results provided by the classification tool show 
up to 42 protocols, including known web protocols such 
as HTTP and FTP, voice over IP protocols, such as SIP, 
and P2P applications such as Bittorrent, etc. Most of 
these protocols have been identified in the database, 
being HTTP the most frequent one, while an important 
part of the flows and packets remain unclassified. The 
relative distributions of flows and packets for most 
relevant protocols are shown in Fig. 1. A first inspection 
evidences big differences among the properties or 
frequencies at flow and packet levels. Therefore, the 
results can be different depending on whether we focus at 
flow or packet levels. 

In this work, we will evaluate sampling techniques and 
their accuracy from the point of view of flow 
classification, not individual packets. This is because 
classifying flows is semantically more significant and 
more adequate to most traffic engineering tasks. 
Furthermore, flow classification is more efficient as all 
the packets in a flow will be classified including even 
those that do not contain any application-specific 
signatures or patterns.  

V.  TRUNCATION OF THE PAYLOADS  

In this section, we will show the conducted 
experiments in running OpenDPI on partially truncated 
packet payloads using the per-packet sampling technique.  

Our main targets at this level are, as mentioned in 
Section 1: To provide protocol oriented results for 
accuracy as a function of the sampled input (truncation 
length), and to show to what extent could the payload 
truncation affect OpenDPI accuracy. 

Through packet truncation, we intend to partially 
inspect each packet’s payload. The studied sampling 
technique is very simple: the classifier must parse only a 
specified length of bytes (called payload truncation 
length or S) within each packet’s payload. This is 
supposed to decrease the global classification time for the 
whole traffic. 

As such, the per-packet sampling scheme we used is 
defined as: “First S Bytes per packet” 

A.  Methodology for Truncation Experiments  
To achieve our targets, we customized OpenDPI tool 

to be able to parse only a specified length of bytes within 

each packet’s payload. In order to obtain granular results, 
our choice was to iterate with incremental truncation 
length values with step of D Bytes, ranging from 0 Bytes 
(no payload) to 1500 Bytes (full payload). We have 
chosen D=128 Bytes. 

The complete dataset we captured is very huge (63 
pcap files totalling 177 GB) to use for the classification 
experiments, joint with sampling. In fact, we needed to 
run the customized OpenDPI up to 15 times on the same 
set of capture files. Since the customized OpenDPI 
requires around 50 minutes in classifying 1GB of capture 
data, the tool was run on a subset of only 17 randomly 
selected files (totalling 45 GB, i.e. 25% of the number of 
pcap files) due to time constraint.  

On the other hand, those packets and flows that were 
not classified by OpenDPI when using the whole payload 
are dismissed and not considered in the figures and 
percentages that will be shown. 

For this section, accuracy results are shown as a 
function of the truncation lengths and grouped according 
to three different sets: per protocol, per protocol group, 
and for all the protocols. For this purpose, the protocols 
were categorised into 12 groups that were defined 
according to [26]. 

B.  Global results  
The results obtained for all the protocols are shown in 

Fig. 2, where we show the number of successfully 
classified packet (in red) and flows (in blue) as a function 
of the length of the sample from each packet payload. At 
packet level, a sudden drop in the accuracy for truncation 
lengths lower than 1408 Bytes is observed. For 1280 
Bytes, 47% of the packets were correctly classified, while 
for 1408 Bytes, 99% of all the packets were identified. 
On the other hand, the results at flow level show that for 
truncation length equal to 512 Bytes, 57% of total flows 

TABLE I.   
FIGURES FOR THE CAPTURED TRAFFIC DATABASE. 

Size of the database ~180 GB 

Number of IP packet 278 Mpackets 

Number of different IPs 822519 

Number of flows 6.3 Mflows 

Number of identified protocols 42 
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were detected, while for 1280 Bytes, 91% of flows were 
detected. Therefore, the analysis is more tolerant to 
payload truncation at flow levels than at packet levels.  

 Thus, truncation length must be at least 1280 Bytes to 
reach 50% of both flow and packet accuracy. This is not 
a very encouraging result for DPI optimisation through 
payload truncation as reducing only 15% of payload 
input would lead to a 50% drop in OpenDPI packet 
accuracy. However, results are encouraging if only flow 
accuracy is the main concern since still 57% of flows can 
be detected for 512 bytes of truncation.  

From a macroscopic point of view, OpenDPI showed a 
common behaviour for all protocols: 
• The number of detected packets/flows is 

increasing as the truncation length increases. 
• For truncation length equal to 512 Bytes, 57% of 

flows were detected while only 22% of packets were 
detected. 

C.  Results per protocol group  
When varying the truncation length, OpenDPI shows 

different behaviour for different protocol groups.  
As an example, results for web group packets and 

flows are shown in Fig. 3.a. Web group results show that 
truncation, though differently, is affecting both packet 
and flow accuracy. In addition, web packet accuracy 
seems to be more affected by truncation than flow 
accuracy. It’s noticeable that packet classification 
accuracy drops to around 50% for 1280 Bytes while for 
flow accuracy it drops to 50% only if less than 512 Bytes 
are truncated. 

A different behaviour is observed for other groups. For 
example, if we consider the IM (Internet Messaging 
protocols) group –Fig. 3.b– or DNS group –Fig. 3.c– the 
classification accuracy is only slightly affected by 
truncation. In fact, for a truncation length equal to 256 
Bytes, more than 50% of both packets and flows are 
detected. The same applies for DNS packets and flows. 

The results for P2P protocols exhibit a mixed 
behaviour –Fig. 3.d– as they are similar to those from the 
web group at packet level and to those from IM and DNS 
groups at flow level. In fact, packet accuracy drops to 
around 50% for 1280 Bytes   while flow accuracy stays 
above 92% even for 128 Bytes only. 

In summary, at a granular level, the experimental 
results showed different behaviour for OpenDPI with 
truncation for different protocols. This in fact could be 
based on two main factors: the stateful behaviour of some 
protocols combined with the detection algorithm used by 
OpenDPI which considers some behavioural and 
statistical information for the whole flow.  

We can evidence this assertion if we examine the 
obtained results for the web and DNS protocol groups. 
Since DNS is a stateless protocol, flows with truncated 
packets can still be detected. On the other hand, as web is 
a stateful protocol, the detection of web flows drops for 
truncated packets. Though not shown, FTP results also 
were different since FTP protocol has a special behaviour. 

 
Figure 2. Global results for classification accuracy as a function of the 

truncation length of the payloads. 
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Therefore, we can conclude that stateless protocols are 
less sensitive to payload truncation than stateful ones. 
Thus, optimising DPI/DFI methods through payload 
truncation could be more effective for stateless and P2P 
protocols. 

For interpreting the differences between flow and 
packet results for the same protocol, flow results are 
considered more significant since undetected flows may 
contain a huge number of packets thus affecting packet 
accuracy. We also noticed that flows detected at higher 
truncation length mostly contain a huge number of 
packets. 

As a result for per-packet sampling, studied in this 
section, unless just a few bytes (not more than 128 Bytes) 
were omitted from the end of the packet payload, payload 
truncation with combined DPI/DFI will lead to many 
unknown flows and packets. For instance, by inspecting 
the full packet payload and omitting the last 512 bytes, 
only 57% of flow accuracy can be maintained.    

VI.  TRUNCATION OF THE FLOWS  

In this section, we will show the conducted 
experiments in running OpenDPI on sampled flows using 
the per-flow sampling technique.  

Our main targets at this level are, as mentioned in 
Section: To provide protocol oriented results for 
accuracy as a function of the sampled input (number of 
inspected packets per flow) and to show to what extent 
could the flow truncation affect OpenDPI accuracy.  

For comparison purposes with per-packet sampling, 
we conducted per-flow sampling experiments to obtain 
results for the same protocol groups, shown in Figures 2 
and 3 of the previous section.  

The methodology we used for flow truncation is 
described in [27], where we intend only to inspect, within 
each flow, the packets whose ordinal number inside the 
flow is lower than a predefined threshold (Nmin). With 
this sampling scheme, while inspecting only the first Nmin 

As such, the per-flow sampling scheme we used is 
defined as: “N

packets of the flow for the purpose of classification, the 
classifier will still handle the remaining packets for the 
purpose of assigning them to the flow. The difference is 
that for these packets the inspection part is to be omitted, 
and this is where the concept of optimisation comes: 
Through flow-sampling, we emphasize on the inspection 
time as we consider it to be the only sensitive term to 
flow truncation. In other words, the sampling speed-up in 
terms of CPU processing time comes only from 
speeding-up the flow classification itself, but there is no 
gain in the operation of mapping packets to flows, as this 
operation is independent and untouched.  

min

A.  Methodology for Truncation Experiments  

 packets per flow” 

In this Section, we used the same OpenDPI 
customization we performed in [27], on which we run on 
a subset of randomly selected files from our original 
dataset, since the main dataset is very huge. This 
customization allowed us to output the packet ordinal 
number inside the flow the packet belongs to at which 

 
(a) 

 
 (b) 

 
(c) 

 
(d) 

Figure 3.  Results for various protocols/groups as a function of the 
truncation length for packets and flows. a) Web; b) Instant messaging; 

c) DNS; and d) P2P. 
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detection is achieved, referred to as packet detection 
number or flow detection number. In addition, we were 
able to generate accuracy results for different numbers of 
sampled packets per flow (Nmin

As in the previous section, flow accuracy results are 
shown in terms of number of successfully classified 
flows as a function of the number of sampled packets 
from the beginning of the flow. Again, these results are 
grouped according to three different sets: per protocol, 
per protocol group, and for all the protocols.  

), without effectively 
truncating the flows.  

B.  Global Results  
Fig. 4 shows the percentage of flows that have been 

classified vs. the number of sampled packets. As we can 
see, most flows are detected by inspecting the few first 
packets. Specifically, within the first ten packets 
(Nmin=10), most protocols are being detected with an 
accuracy value of 99%. As also depicted in Fig. 4, flow 
accuracy is near 90% for Nmin=4. Only a slight increase 
in accuracy is obtained for Nmin values greater than 10. 
For these reasons, Nmin=4 or Nmin

C.  Results per Protocol Group  

=10 could be 
considered critical values for the per-flow sampling 
scheme, according to the required level of accuracy and 
the required level of classification speed-up. 

Results for the same protocol groups tested in the 
previous section are now shown in Fig. 5. The DNS 
group in Fig. 5.c seems to be the less sensitive protocol to 
flow truncation, as it’s being classified by OpenDPI by 
inspecting solely the first packet with a 99% of 
classification accuracy. Other protocol groups are shown 
as well, like Web in Fig. 5.a, and Instant Messaging in 
Fig. 5.b. The same result as seen globally for all protocols 
persists: at least four packets are required to be inspected 
to reach an accuracy level of 90% and above. Results for 
P2P are shown in Fig. 5.d where 84% of accuracy can 
still be reached for Nmin

D.  Results per Protocol  

 =4. If the classifier inspects the 
first ten packets of a P2P flow, 99.15% of classification 
accuracy can be reached as well. 

The average packet detection number in the dataset is 

 
Figure 4. Global results for flow accuracy as a function of the packet 

detection number. 

 
 

 
(a) 

 
 (b) 

 
(c) 

 
(d) 

Figure 5. Flow accuracy results for various protocols/groups as a 
function of the packet detection number. a) Web; b) Instant messaging; 

c) DNS; and d) P2P. 
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shown in Fig. 6 for most common protocols.  
Some protocols like iMESH and Bittorrent, show 

higher values than other protocols. We validated the fact 
that the presence of most deviation is due to flows that 
were under course during the start of the capture. Most 
protocols averages were below 10 packets. To validate 
this fact, we generated results per individual protocol. For 
instance, Fig. 7 shows the histogram of flow accuracy for 
some selected protocols like SIP (Fig. 7.a), FTP (Fig. 7.b), 
and HTTPS (Fig. 7.c). It can be noticed that about 90% 
of flow accuracy is reached by inspecting the first 6 
packets. 

As a result for per-flow sampling, studied in this 
section, inspecting the first 4 to 10 packets of a flow (as 
DPI input for inspection) could maintain the flow 
classification accuracy at high levels ranging from 90% 
to 99%.  

In choosing the appropriate value of Nmin

If the target is to classify only one specific protocol, 
N

 for the 
classifier, two situations should be distinguished 
according to the classification target:  

min could be easily specified according to Fig. 6 (e.g. for 
HTTP, Nmin=4). In this case, the classifier would inspect 
only the minimum number of packets, necessary for flow 
classification. However, if the target is to classify all 
protocols, which is the most common situation, Nmin 
should be assigned the maximum value of the average 
packet detection number (Nmin=10) in order to classify 
most protocols. In this case, and for protocols whose 
average packet detection number is lower than Nmin

E.  Computational Measurement  

, the 
classifier would inspect more packets than necessary. 

To highlight the optimisation aspect of sampling 
approaches, we choose to measure the computational 
gain in processing time for the per-flow sampling 
technique. Specifically, we measure the processing time 
consumed by the classification modules inside the 
classifier’s code. As mentioned previously, through the 
flow sampling process, only the inspection time is 
optimised and not the packet handling time. 

Experiments show that compared to full flow sampling, 
the per-flow sampling approach can provide 9% of 
computational time gain and 99% of classification 
accuracy, when only the first 20 packets (Nmin

In comparing to EIM (Equidistant Invariable Mode) [3] 
having a sampling rate of 7/13, 36% of classification time 
can be saved due to inspecting less packets with the per-
flow sampling approach (for N

=20) are 
inspected. 

min

VII.  RESULTS  COMPARISON AND ANALYSIS 

=20). 

A.  Results Comparison  
Table II shows the comparison results as summarized 

for both sampling techniques, according to the provided 
flow classification accuracy and the required DPI input. 
The percentage of input reduction is not shown in this 
table since it is dataset-dependent and can be simply 

estimated according to the average number of packets per 
flow, and the average packet size.  

Results shown in Table II indicate that in order to 
obtain around 90% of flow accuracy, it’s mandatory to 
inspect the first 1280 payload bytes of each packet (as 
DPI input for inspection), while inspecting the first 4 
packets with full payload per flow is sufficient to obtain 
the same accuracy level. For higher accuracy results at 
99%, the first 1408 of payload bytes are required per 
packet compared to the first 10 packets with full payload 
per flow.  

For the dataset we used, the average number of packets 

TABLE II.   
COMPARISON BETWEEN PER-FLOW AND PER-PACKET SAMPLING 

SCHEMES USED FOR DPI OPTIMISATION 

Sampling Scheme 
used for DPI Optimi-

sation 
Required Input  

Flow classi-
fication 

accuracy 

Per-packet payload 
sampling 

First 1280 bytes of 
payload, per packet 91% 

First 1408 bytes of 
payload, per packet 99% 

Per-flow packet sam-
pling 

First 4 packets with 
full payload, per flow 90 % 

First 10 packets with 
full payload, per flow 99% 

 

 
Figure 6. Average detection packet number for each individual proto-

col. 
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per flow is 45 packets and the average packet size is 233 
Bytes. Thus, in order to obtain at least 90% of flow 
accuracy, 932 Bytes will be required for inspection with 
the per-flow sampling compared to 10,485 Bytes with the 
per-packet sampling. 

Thus, compared to per-packet sampling, the per-flow 
sampling technique will provide higher flow 
classification accuracy at a cost of less input. Apparently, 
this applies only to traffic having, on average, more than 
4 packets per flow and less than 1400 Bytes per packet, 
which is common for traffic of most known protocols, as 
shown in the dataset we used. 

Moreover, per-packet sampling leads to many 
unknown packets, and the packet accuracy drops to 47% 
when the packet truncation length is 1280 bytes, as 
depicted in Fig. 2. Thus, optimising DPI/DFI methods 
through payload truncation could not be considered 
generally effective (especially when the set includes 
stateful protocols, which are the more affected).   

Obviously, the best trade-off between the required DPI 
input size and the provided classification accuracy in 
Table II is with the per-flow sampling when only the first 
4 packets with full payload are inspected per flow.  

As a result, according to the sampling schemes we 
defined and regardless of the traffic dataset being tested, 
the following result can be generalized:  

For DPI optimisation, the per–flow sampling 
technique is more convenient than the per-packet 
sampling technique, in terms of the required input and 
the provided classification accuracy. 

 

B.  Results Analysis  
One interpretation for the obtained result is that by 

combining DPI with other technologies (such as 
behavioural and statistical modelling), the task of DPI 
optimisation through per-packet sampling or payload 
truncation may render the identification method itself 
inefficient since the non-parsed part of the data may still 
be needed for the other added technology. However, to 
validate this assertion, further experiments are required, 
in which the pure DPI technique is to be separated from 
other helper technologies. The per-packet payload 
truncation can still be useful as an optimisation if, instead 
of classifying all the traffic, the target is to select some of 
them based on the application content and depending on 
the nature of the associated protocol. 

With the per-flow sampling, better results are obtained 
only if the first packets were sampled. This can be 
interpreted by the fact that the first packets usually signal 
the application protocol in use, during the first phase of 
flow set-up, and are thus of high importance for the 
classification process. 

On the other hand, the default behaviour for PBFS 
(Packet Based Per Flow State) classifiers [28] is that the 
entire session must be “marked” as soon as one packet is 
detected to be holding an application signature.” 

However, not all DPI classifiers are PBFS based, and 
for some particular cases, not all flows belonging to the 
same application protocol should be necessarily detected 
at the same packet detection number. For instance, when 

the packet holding the signature is delayed or lost, more 
packets will be inspected until the flow protocol is 
detected at higher packet numbers or simply marked as 
unknown. As for the OpenDPI tool, we were able to 
prove its PBFS like behaviour both theoretically, by 
interpreting the classifier’s code in Section 6.A, and 

 
(a) 

 
 (b) 

 

(c) 

Figure 7. Flow accuracy results for two selected protocols as a func-
tion of the packet detection number. a) SIP; b) FTP and c) HTTPS. 

 

JOURNAL OF NETWORKS, VOL. 8, NO. 1, JANUARY 2013 79

© 2013 ACADEMY PUBLISHER



practically, by interpreting results for the average packet 
detection number (being nearly the same per protocol, in 
Fig. 6) and for the classification time gain (being 
moderate, in Section 6.E). 

VIII.  CONCLUSIONS AND FUTURE WORK  

In this paper we explored the effects of sampling on 
traffic classification accuracy using OpenDPI. Traffic 
sampling is considered one of the means of DPI 
optimisation as it reduces the required input size for the 
classifier. Two sampling techniques were tested and 
compared: per-packet sampling (through partial payload 
inspection) and per-flow sampling (through inspecting 
only a few packets per flow). Comparison is 
accomplished according to the reduction in the input size 
and the maintained classification accuracy. 

Results show that flow accuracy is less sensitive to 
flow truncation than to packet payload truncation. With 
per-packet payload sampling, unless just few bytes (not 
more than the last 128 Bytes) were omitted during the 
packet payload inspection, per-packet sampling (or 
payload truncation) will lead to many unknown packets 
and flows. With per-flow packet sampling, inspecting the 
first 4 to 10 packets per flow could maintain flow 
accuracy at higher levels, ranging from 90% to 99%. 

As a result, the per–flow sampling technique is more 
convenient than the per-packet sampling technique for 
DPI optimisation.  

To provide more richness to this work, future 
enhancements may include comparing existing sampling 
methods within the same category (per-flow and per-
packet), in which computational gain is evaluated in 
terms of both processing time and memory usage.  
Enhancements may involve as well other advanced DPI 
tools to discard any possible bias to OpenDPI, our best 
tool of choice.  

Finally, in seeking for DPI optimisation through 
sampling, future enhancements should involve additional 
experiments which should integrate different techniques 
in order to define the optimal sampling scheme for the 
DPI classification process. Once the required input for 
the DPI classifier is optimally reduced, other DPI 
optimisation means, as found in the literature, could be 
used jointly to complete the job of DPI optimisation. 
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